Explicit Chabauty over Number Fields

نویسنده

  • SAMIR SIKSEK
چکیده

Let C be a smooth projective absolutely irreducible curve of genus g ≥ 2 over a number field K of degree d, and denote its Jacobian by J . Denote the Mordell–Weil rank of J(K) by r. We give an explicit and practical Chabauty-style criterion for showing that a given subset K ⊆ C(K) is in fact equal to C(K). This criterion is likely to be successful if r ≤ d(g − 1). We also show that the only solutions to the equation x2 + y3 = z10 in coprime non-zero integers is (x, y, z) = (±3,−2,±1). This is achieved by reducing the problem to the determination of K-rational points on several genus 2 curves where K = Q or Q( 3 √ 2), and applying the method of this paper.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finite Weil Restriction of Curves

Given number fields L ⊃ K, smooth projective curves C defined over L and B defined over K, and a non-constant L-morphism h : C → BL, we denote by Ch the curve defined over K whose K-rational points parametrize the L-rational points on C whose images under h are defined over K. We compute the geometric genus of the curve Ch and give a criterion for the applicability of the Chabauty method to fin...

متن کامل

Chabauty for Symmetric Powers of Curves

Let C be a smooth projective absolutely irreducible curve of genus g ≥ 2 over a number field K, and denote its Jacobian by J . Let d ≥ 1 be an integer and denote the d-th symmetric power of C by C(d). In this paper we adapt the classic Chabauty–Coleman method to study the K-rational points of C(d). Suppose that J(K) has Mordell–Weil rank at most g− d. We give an explicit and practical criterion...

متن کامل

Five Squares in Arithmetic Progression over Quadratic Fields

We give several criteria to show over which quadratic number fields Q( √ D) there should exists a non-constant arithmetic progressions of five squares. This is done by translating the problem to determining when some genus five curves CD defined over Q have rational points, and then using a Mordell-Weil sieve argument among others. Using a elliptic Chabauty-like method, we prove that the only n...

متن کامل

On Finiteness Conjectures for Endomorphism Algebras of Abelian Surfaces

It is conjectured that there exist only finitely many isomorphism classes of endomorphism algebras of abelian varieties of bounded dimension over a number field of bounded degree. We explore this conjecture when restricted to quaternion endomorphism algebras of abelian surfaces of GL2type over Q by giving a moduli interpretation which translates the question into the diophantine arithmetic of S...

متن کامل

On Finiteness Conjectures for Modular Quaternion Algebras

It is conjectured that there exist finitely many isomorphism classes of simple endomorphism algebras of abelian varieties of GL2-type over Q of bounded dimension. We explore this conjecture when particularized to quaternion endomorphism algebras of abelian surfaces by giving a moduli interpretation which translates the question into the diophantine arithmetic of Shimura curves embedded in Hilbe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009